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it turns out to be sufficient that all the roots hr’ 

I 
ap, 
- - h,T&,, 
dh, 

,.. ., hf”’ of the s th-degree equation 

I = 0 (4.14) 

have negative real parts. It can be shown that a similar correspondence is preserved also 
in the autonomous case as well as in the more complex cases when the critical charac- 
teristic indices for l.& = 0 have nonprime elementary divisors. 

BIBLIOGRAPHY 

1. Neimark, Iu, I. and Shil’nikov, L. P,, On the application of the small 
parameter method to systems of differential equations with discontinuous right- 
hand sides. Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostroenie, W6, 
1959. 

2. Maikin, I. G,, Certain Problems in the Theory of Nonlinear Oscillations. 

Moscow. Gostekhizdat. 1956. 
3. Neimark, Iu. I., The method of point transformations in the theory of nonz 

linear oscillations, I, I I, I II. Izv.Vuzov, Radiofizika, NWl, 2, 5, 6, .1958, 
4. Kolovskii, M, Z., On conditions for the existence of periodic solutions of 

systems of differential equations with discontinuous right-hand sides containing 

a small parameter. PMM Vol. 24, W4, 1960. 
5. Mikusidski, J.G. and Sikorski, R., The elementary theory of distribu- 

tions, I, II. Rozprawy Mat., Vol.12, 1957, 54 pp. ; Vol.25, 1961. 47 pp. 
6, Rozenvasser, E. N., Oscillations in Nonlinear Systems. Moscow, “Nat&a” , 

1969. 

Translated by N. I&C, 

UDC 532.593 

ON STEADY CAPILLARY-GRAVITATIONAL WAVES OF FINITE AMPLITUDE 

AT THE SURFACE OF FLUID OVER AN UNDULATING BED 

PMM Vat. 36, N%, 1972, pp.1070-1085 
Ia. I. SEKERZN-ZEN’KOVICH 

(Moscow) 
(Received July 26, 1972) 

The problem of steady capillary-gravitational plane waves of finite amplitude 

at the surface of a stream of perfect incompressible fluid over an undulating 
bed under constant surface pressure is considered. The intersection of the un- 
dulating bed surface with the vertical plane is assumed to be a periodic curve 
whichis called the bed line and specified by an infinite trigonometric series. 
An exact solution of this problem, which reduces it to a system of nonlinear 

integral and transcedental equations, is presented. The theorem of existence 
and uniqueness of solution of that system is obtained on the assumption of 
smallness of the bed line amplitude. The method of proving this theorem is 
indicated and the method of deriving solutions with any degree of approxima- 



Steady capillary-gravitational waves at the surface of fluid 1005 

tion is described. The solution is constructed in the form of series expansions 

in terms of a small dimensionless parameter proportional to the amplitude of 
the bed line first harmonic. First three approximations are worked out right to 
the end. The approximate equation of wave profile is presented. 

The particular case of a wave whose arc length is equal to that of a steady 
free linear wave, which corresponds to the specified stream velocity over a 
horizontal flat bed for constant pressure is also considered. In this case the 
parameter of the basic integral equation is equal to one of the eigenvalues of 
the kernel of this equation, and the solution is constructed.in the form of series 

expansions in powers of the cubic root of the small parameter mentioned above. 

A similar problem was first analyzed in [l] by the Levi-Civita method by 

which it was reduced to solving nonlinear differential equations, without, how- 
ever, considering the particular case mentioned above. Capillary-gravitational 

waves over an undulating bed were considered in r2, 31. Only the proof of the 
theorem of existence of solution by methods of functional analysis for high 
stream velocities is given in r2]. The topolgical proof of existence and uni- 

queness of solution and the algorithm of its derivation is given in [S] but the 
calculation of approximations is only outlined. 

In the present paper the equation of the bed line, unlike in [3], is of a form 
which makes it possible to represent any approximations as finite sums, and the 

basic system of nonlinear integral and transcedental equations is analyzed by 
the analytical method of Liapunov-Schmidt and its developments. 

The waves considered here and in referenced works are induced by the undu- 
lating bed surface and, if the bed is flat, they cease to exist and the stream 

becomes uniform. We shall call such waves induced, as distinct from those 
which exist in the case of a flat bed at particular stream velocities. 

1. Statement of the problem rnd dsrlvotion of ba,lc equations, 
Let us consider a stable plane-parallel motion of a perfect incompressible heavy fluid 
bounded from above by a free surface under pressure p which is assumed constant and 

equal p,,. From below the fluid is bounded by an undulating bed, whose intersection with 
the vertical flow plane is specified by a certain periodic and twice-differentiable curve 

L which is called the bed line. Line I; is assumed to be symmetric about vertical lines 
drawn through its crests and troughs. Let us assume that the stream flows at a specified 

mean horizontal velocity c at y = 0 (see below) from left to right. Owing to the peri- 
odicity of the bed line, the fluid free surface assumes the form of a stationary periodic 

wave, which in coordinates attached to the progressing wave moves at velocity - C. 

Let the crests of the unknown wave and of curve L lie on the same verical line and 
the two be symmetric about that line, and line L he, also, symmetric about the vertical 
line passing through the middle of its trough. We superpose the y -axis of an orthogonal 
system of coordinates .UJ on the axis of wave symmetry and direct it upward. We locate 
the coordinate origin 0 at the intersection point of the y-axis with line & and direct 
the .I: -axis from left to right along the tangent to the bed line L. Let the period (or 
the wave length) of line 1, along J he 7, _ Along the distance between two adjacent 
wave crests there is at least one trough (in the general case, several crests and troughs 
may exist in a single wave length). It is assumed that line L has horizontal taugents 
at points 1’ (J and x = * l ‘: >.. The angle of a tangent of line li to the n,-axis is 
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specified in the form of function 8 (8) of arc lengths measured from zero. The direc- 
tion of increasing arc length s is takdn as the positive direction along the tangent. We 

denote by 21 the arc length of fine & in a single period along 5, i-e, for 0 < 2 _s A, 
For x zz -I/$ J. and x = Ifi 2. the arc lengths are, respectively. 8 = - $ and 
s = 1. Since 8 (s) is a continuous function of s which changes its sign at transition 

through crest tips and the middle of the troughs, then 

8 (0) = 63 (I) = Q (- l) = 0 (f-1) 

By virtue of the imposed symmetry condition, we have 

@(--4-j-s) = --@(I-s) (1.2) 

Actual solution of this problem requires the availability of analytical expression for 
functions 0 (s). Assuming that the slope of line L is small, we consider in accordance 

with the condition of periodicity and conditions C1.1) and (1,2) that the function @ (s) 
is defined by the trigonometric series 

m 

where E is a small positive dimensionless parameter, fin are specified real numbers, 

and the series 

is convergent in a circle of radius Es > 0. Having determined function Q (s), we can 

obtain the parametric equation of the bed line rn the form 

In this case the wave length ?L of line L?, is, obviously, determined by formula 

at 

h = l cosQ(s)d.s 
I 

1f.5) 

0 

lt follows from formulas (1.3) and (1.5) that a is defined by the known function of E: 

where A, fn = 4, s,._.) are polynomials of fi;.The length of the unknown steady 
wave over the undufating bed is assumed to be also equal A. 

We take the flow plane xy as the plane of the complex variabIe Z = 1‘ j- Q. Let 
cp be the velocity potential, I$ the stream function, w = ‘1’ --b i$ The complex velo- 
city potential, and u and v the projections of the velocity vector q on the axes of 
coordinates. We then have 

dW 
--~_ 
dz 

U+iV, US--$, V=_-.f!!$ 

For the derivation of boundary conditions for the basic equations of this problem we, 
first of all, conformally map the region of a single wave bounded by two vertical tines 
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and two wave-like curves from above and below, onto the rectangle 

0 < ‘p < ‘PO? 00PS%l 

in the plane w (here 9 = $,, is the stream rate of flow per unit of time, cp = 0 and 
cp = ‘p,, at 2 = 0 and z = A,), respectively), and then map this rectangle inside the 
circular ring whose center lies at the zero of plane u = ui + zus. The last transfor- 

mation is defined by formula 
7~ = *lnu (1.7) 

The segment 0 < cp < ‘p. of the free surface is now represented by the external cir- 

cle of unit radius and that of the bed line by the inner circle of radius r0 = exp 

( -2n&,/ vO) smaller than unity. The ring is slit along segment (r,,, 1). For the deri- 

vation of solution we assume that $,,/ ‘p. and, consequently, also r. are specified and 
independent of E (see (1.3)). The mapping of this ring from plane u onto the region 

of a single wave in the z-plane is defined by the relationship 

dz h f (u) 
du= 

--- 
2ni u (1.8) 

Function f (u), which is holomorphic, is represented within the considered ring in plane 

u by a Laurent expansion. Owing to the symmetry of the wave and bed line, the coeffi- 
cients of this expansion must be real. Introducing, as usually [I], function 

Q (u) = @ + iz = - i In f (u) (1.9) 

by virtue of (1.7) and (1.8) and setting cp,, = ch, we obtain 

dw/dz = - c@-ia (1.10) 

It follows from this that throughout the stream function @ is equal to the angle of incli- 

nation of the velocity vector q to the s-axis, and that 

4=lq[=ce (1.11) 

For u = eie (0 is the angle of inclination of the radius vector to the u i -axis) from 
(1.9) and (1.8) we obtain a differential relationship in which we separate the real and 
imaginary parts and, after Integration, obtain for the wave profile the parameteric esua- 

tion tl e 

x _- --&-\;~(~co~O(~)dr), y = - -&-\;c?(~) sin@((r)d_rl (1.12) 

0” 0” 
For the determination of y we transfer the coordinate origin to the wave crest tip, and 

in(1.1’2) set r (q) = T (I? q) and 0 (q) = <L, (1, q). 
Formulas (1.12) imply that for solving the problem we must determine not only CD (0) 

but, also, T (0). Owing to the symmetry of the unkown wave about the vertical line 
passing through its crest, function T (tl) is even and function CD (0) is odd. Hence they 
can be represented by the following trigonometric series: 

- T (0) ; “1” + i n,,cos 72 0, (1) ((3) = jj B,, sin nf3 (1.13) 
,L_-L ,1-_1 

It is known rrorn rhe theory of analytic functions rhat at the external circumference 
the following relationships: 
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based on Will’s formulas for a ring and the generalizing relationships of Dini are valid. 
In the relationships (1.14) 

‘t* (0) = r (ro, 0), @* (8) = (I, (ro, 0) 

Owing to the symmetry of the bed line formulas (1.13) are valid for these functions but 

with different coefficients A,, and B, (rz = 1, 2, s,...). Passing to the boundary con- 

dition at the surface, we take for the latter the Bernoulli integral 

p / p = c - gY - ‘/2q2 (1.15) 

where C is a constant, g is the acceleration of gravity, and p is the density. Pressure 
differences at the free surface are balanced by the vertical components of surface tension. 

For these forces by the Laplace law we have 

p -p,,=f[L/K (1.16) 

where p is the pressure from the inside of fluid, pO -= con& is the pressure from out- 

side of ‘the fluid, ct is the capillarity constant, and 1~’ ;s the radius of curvature at points 
of the free surface. Expressing the curvature in terms of d@ / do, we obtain 

(1.17) 

Substituting the expression for p from (1.17) into (1.15), we have 

where y is determined by the second formula of (1.12). Separating in the right-hand 
side of (1.18) the terms which are linear with respect to (1, and T, we obtain 
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F[z,Q,6]=6(e-T-I+$)-((et-l-r)+ 

xe-‘i [e-5(n) sin CD (tj) - Q,(q)] dtj + 

0 

e 9 

xe-’ ‘fD(q)dr] -xSd,(q)dq 
s 

(1.21) 
0 0 

Let us determine the parameters in Eq. (1.20) more accurately. It follows from (1.19) 

and (1.6) that m 

y = y(O) + 2 y@0”)en, y(O) = 
c"p3.o 

yw = 

?I=1 
-Giji-' 

00 

x=x,+ 2 I&En, 

n==1 
(1.22) 

By virtue of (1.22) Eq. (1.20) assumes the form 

e 
dQ, 

- = v(O) 
d0 

6 - 1 - (6 + 1) z + XfJ ’ 0 (q) dq + 
I 
0 

(1.23) 
n=1 0 

where the expression omitted in the second set of braces is the same as that appearing 

in the first. We transform the terms linear with respect to functions and parameter 8 
in braces in (1.23) by using formulas (1.14) and integration by parts. We then combine 
in the first braces the terms with the same integrand functions d@ / dy and different 

kernels K(q, 0) and K, (TJ, 0) fr om (1.26). Since the velocity c is specified, the 

parameters ~(0) and x0 are fixed, and 6 is determined by the periodicity condition 
0 (0 + 2n) = CD (0). Since the right-hand side of Eq. (1.23) contains parameter a, 

hence the solution and, consequently, also 6 depend on E. We set 

6 = 6, + S’ (a) (1.24) 

From the periodicity condition at E --f 0 we find that 6, = 1, since r(e), as well 
as the solution tend to vanish. After all these transformations with allowance for (1.24), 

Eq. (1.23) assumes the final form 

5 (0) = v(O) {f K* (1170) 5 (q) dl] +‘s’ (8) - 
0 

2(2+w~~~w9,w*(ewt(2+6'(&))L40(&)+ 
0 

m 

fi’ (FJ 5 K (% 0) 5 (rl) a + x0 [ K, (q, 0) 5 (9) dq + 

0 0 
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(1.25) 

(the dots in the second set of braces stand for the last seven terms of the same form as 

those appearing in the first set). 

In the last equation 
C(0) =&D/I@, 6* (0) -= dr@* j de 

(1.26) 

where v, are eigenvalues and qn (Cl) are eigenfunctions of kernel K* (?J, 0). The 

condition of periodicity of function CD (0) yields the relationship 

(r’(E) = -NJ K,(g,0)1(l)d9--(2+8.(a))Ao--~S’Y.(B,e)dB- 
0 0 

- 5 2n:(0) n=l-V(‘L)Sn {[w (cl i- (2 + Q’ (6)) A0 + 

where 

%I (1.27) 

0 0 

Let us turn to the boundary condition at the undulating bed for r = rs. Obviously, 
the condition of flow along the bed contour must be satisfied. In the used here notation 

and by virtue of formula (1.3) this condition is of the form 

(1.29) 

To find the final form of this boundary condition it is necessary to determine for the 
conformal transformation considered here the dependence of the arc length S along 
the bed line on angle 8 in the ring plane. i.e. to find function s (0). We recall that 
for r = ~0 

dz = _... $$ e-WQ)+iWQ)& 

hence 
(1.30) 

The minus sign in formula (1.30) is there in order to have positive increments of arc s 
to correspond to negative increments of angle 8, From (1.30) we have 

e 

a (0) zz - & $ e-+(“)dy (1 .X1) 

0 

We select coefficient A, (E) so as to satisfy the condition specifying the length of the 
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bed line to be equal 21 over one period, According to (1.31) this condition is defined 
by formula -2x 

21 = - &_ g e-W&I 

01 
0 

-W 
h . 

2&-&(e) = _ - 
2s I 

e-~*WAo@)~~ 

or 0 

2&+&) = 
a? 

-z- s 

e-f*W-Aaff~~q (1.32) 
0 

and, by virtue of (1.13) for z* and @*, - ‘6* (- 7) - A, (E) does not contain 

A0 (e). It follows from this that the expansion of s (0) in powers of E 

s @I) = so ((0 + 5 nns, $0 (1.33) 
n=1 

contains only one secular term 

so (0) = - 2 n-18 (1.34) 
and, consequently, 

m 

(1.35) 

Differentiating (1.29) with respect to 8 and taking into account (1.35), we obtain the 

boundary condition at the bed in the final form 

5” (0) = 

+I{- [,,~~(~~~~S’cn;“;~~8~~Hsin;S~(~~, + 

~[co~eo,(~,~(e))+,i::esin(~s’ce,)l~)+ (1.36) 

+ i c”Pn q coa 9 +& 
?%=a 

Function r* (0) in Eq, (1.31) is determined by formula 

- 7” ((3) - A, = - 1 K iv, 0) _e$ Q+ zpwl, e> “d”l -dy (1.37) 
0 0 

which is derived in a manner similar to that of the first of formulas (1.14). 

The problem is thus reduced to the determination of functions 

and of constants 6 = 1 -/- 8’ (E) and no (E) in the system of Eqs. (1.~25)~ (1.27), 

(1.31),(1.32) and (1.36). Functions r (0, c) and a* (0, e) are found from (1.14) and 

(1.37),and 8 

(11 (e, 8) = '5 (q, ~)dq, 
a 

cD*(fI,,) = ig*(q,+q (m3) 

0 0 

If in this system r (0) and -c* (0) are eliminated with the use of formulas (1.14) and 
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(1.37), and (1> ((3, e) and cI>* (8, E) are expressed in the form (1.38), then Eqs. (1.25), 
(1.31) and (1.36) become nonlinear integral equations in terms of 5 (0, E): c* (8, a) 
and s (0, E) , while Eqs. (1.27) and (1.32) become transcedental with respect to 6’ (E) 
and .4, (e) with functionals relative to the ~known functions, If, however, the sequence 
of determination of approximate solutions is taken into account, it is reasonable to con- 

sider only Eq. (1.25) as being a nonlinear differential equation with respect to 5 (0, e); 
the remaining ones may be considered as being nonlinear transcedental equations with 

respect to functions c*(O, E) and s (0, E) and constants 6’ (E) and A0 (E) with linear 
operators and functionals relative to the unknown functions. 

Two kinds of solutions must be considered : the first in which yfaf j; Y TL, and the se- 

cond when v(o) == v,. In the first case the solution is derived in the form of series ex- 

pansions in powers of parameter e , and in the second it is obtained in terms of powers 

of Es/a. In both of these cases for the coefficients of expansion of 5 (0, E) we obtain 

Fredholm’s linear integral equations of the second kind with kernel K* (rI, 0) and para- 
meter ~(0) A solvable system of linear algebraic equations is always obtained for the 

determination of coefficients of expansions of remaining unknown quantities. Equations 
defining the first coefficients of these expansions are analyzed in Sect.2 for v(O) = Y,. 

let us define the limit values of the known quantities for E -+ 0. The boundary 
conditions and equations of this problem will be satisfied for E -+ 0 , if we set 

z (r, 0) 3 0, 02 

From (1.6) and (1.33) follows that 

Iimjl = h, = 21, 

(r, 0) 3 0, 6 = 1, A, = 0 

lirn s (8) = - f 0 for E40 

Mechanically this limit solution means that a uniform stream with horizontal free sur- 
face flows over a horizontal bed, The iength of the region into which the ring interior 

is transformed in the z-plane is h, = 21, and the velocity is, by virtue of (1. ll), equal 

C. 

3, Solution of the linear problem. 2.1. Solution of the linear 
problem for ~(0) = Y, and analysis of the kernel of integral 

equation (1.25). Expressing the solutions of Eqs. (1.25) and (1.27) in the form of 

series expansions in terms of powers of E*&~ we obtain 

The same system is obtained, if in (1.25) and (1.27) we set c* (0) s 0, as in the case 
of a free wave over a flat bed, and linit these to linear terms only. Eliminating 6, from 
(2.2) and (2.1) and omitting the subscript, we obtain 

an 

5 (et = ~(0) 5 K* (Y. e) p (4 dry (2.3) 
0 

This equation is a homogeneous linear Fredholm’s equation of the second kind, hence, 
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by the second Fredhoim’s theorem it has a nonzero solution for v(O) = vnt where v, 
is the eigenvalue of kernel K* (q_ 8). On the other hand, by virtue of (1.22) the para- 
meter v(O) > 0, whiiev n ,according to (1.26), depends on n and x0. Parameter 3~0 is 
taken as fixed, hence it is necessary to investigate the dependence of v ,, on n for fixed 
x0. A detailed analysis of this dependence appears in [5]. Here we present only its re- 

sults. 

let us assume that n is fixed and investigate the relationship between v@) and y.* 

for which Eq. (2.3) has a nonzero solution. Setting vf”) = v,, from (1.26) we have 

Substituting in this equation the expressions for Y(O) and x0 from (1.22). we obtain the 
known dependence between C? and &, 

(2.5) 

Relationships (2.4) and (2.5) have also been analyzed in [5]. We present here only the 
results of investigation of solution of the linear problem in the form of the following 

theorems. 
Theorem 2.1. Let 

1 _ -.A_ 2y 
v(o) - n” ( It 

If 
- %a) 

where n is a fixed positive integrer. Then for all x0 in the interval 0 < x0 < 2 vn” 
Eq. (2.3) has the unique nontrivial solution 

5 (0) = ctcp, (6) = -j$ co.9 ne 

If 

Ice = &n) = 2 t~Y%&*~;%J 

(m is a positive integer), then 

5 (0) = CyCp,, (8) = -$ cos na8 

is a particular nontrivial solution which is linearly independent of ‘Pn (6). and 

5 (0) = Clcp,, @I + CdP,,, (0) = -g cos ne -b -g cos me 

is the general solution. 
We call x0 = xft”’ bif~cationai parameters, and the waves, corresponding to these 

and determined by the solution in the form of a sum of two harmonics, are called double- 

waves. The related eigenvalue vn = v, is for x0 = xL~,“’ double-valued. 
Theorem 2.2. The curve c2 = cE (A,) which represents Eq. (2.5) has a verticaI 

asymptote ho = 0 and a horizontal one ~2 = gh. The value &,, which corresponds 
to A, = ho*, where ho” is the positive root of some transcedental equation, lies in the 
first quadrant. The related value x,, = ;to* is called critical. From (1.22) ye have 

Ku* z 
$$.+* 

‘G*in 

The branch of curve ca = ca (h,) which corresponds to 0 < ho < ho:b or to 0 < x0 < x0* 
relates to waves called capillary-gravitational. Waves which occur for A,, > ho* or 
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Q’ < x0 < 2 v,’ are referred to as gravitational-capill~ waves. 
Theorem 2.3, For x0 = 0 Eq. (2.3) assumes the form 

5(R)=?v’0)~ K(rl,e)t(n)dn 
0 

which defines purely capillary waves, and which for fixed 2v(‘) = vn’ has the unique 
nontrivial solution 5 (0) = (C, / v’n) co.9 n 0 (n is a positive integrer). 

Theorem 2.4. For x0 = 2 Y%‘ it is necessary to set 1 f Y(O) = 0 (hence, p = 0). 

Then instead of Eq, (2.3) we have sX 

1: + _-lfj = V&” ’ 
s 

ICar (rt, 6) (7 + 4 dn 
0 

where a, 

for purely gravitational waves which have, respectively, the following unique nontrivi- 

al solutions : 
z (0) = -+- cos no, 4, (0) = - sin 4 

;s 

for fixed integer n. (Allowance is made here A, = 0 in a linear approximation). 

2.2. Solution of the linear problem for ~(0) #v,. For analyzing in 

a linear approximation the possible form of the free surface in terms of wave propaga- 

tion velocity, we assume the bed line to be specified by 
m 

@(S)=E 2 p,sinnF 
*=r 

(2.6) 

Then 

c* (i3, E) = &* (8) = - E i PiCOS i 0 (2.7) 
i=l 

Function 5 (6, 8) is determined by the solution of the related no~omogeneo~ linear 
integral equation derived for v(O) # Y, and is of the form 

5 (0, &) = &4ym -j piyi 
+I w* (vi- Y(O)) 

c0sie (2.8) 

Integrating (2.7) and (2.8). we obtain 

O” P. 
@*f&e)=-e#YJ+siniB (2.9) 

I=1 

aI@, E) zr.z &4ym fj pivi 
+i iYi* (Vi - Y!!?) 

sin i0 (2.10) 

Denoting by ci the wave velocity defined by formula (2.6) for i = n, we can show 

that 
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Vi -Y(O)> 0 for C<Ci 

Vi - V(O) < 0 for C > Ci 

(2.11) 

Since vi and vi* are positive, the signs of coefficients of terms in (2.10) are determined 
by the sign of pi / (vi - v(O)). It follows from (2.11) that the coefficients of related 

terms in (2.9) and (2.10) have different signs for c < Ci , while for c > Ci they are 

of the same sign. Analyzing expressions (2.9) and (2.10) with allowance for inequality 

(2.11). we obtain the following results. 

If velocity c satisfies the inequalit, c-,-r < c < cs,, then the fIee surface crests 
and troughs lie, respectively, over the crests and troughs of the bed line, while for czn< 
c < %+r, the wave crests and troughs of the free surface lie, respectively, over the 

troughs and crests of the bed line. It is assumed here that the first term of formula (2.9) 

determines the shape of the bed line. 

For the analysis of solution of the linear problem for ~(0) # Y,, and the bed line defi- 
ned by expansion (1.3) see Note 4.3 in Sect. 4 below (see also p. 380 in [ 11). 

3. Solution of brric equrtion: of the problem, Asnoted at the end 
of Sect. 1, the case of ~(0) # Y, and that of ~(0) = y I, must be considered separately 

when solving Eqs. (1.25) (1.27) (1.31), (1.32) and (1.36). We shall indicate the method 
of solution derivation in both of these. For the first case we shall adduce the results of 
determination of the first three approximations, and for the second case we shall use, as 
an example, that of v(O) = vr selecting parameter x0 so as to obtain a simple positive 
eigenvalue of vi Only the first two approximations have been completely determined, 
while the determination of the third approximation has not been carried out to the end. 
For v(s) = v, = v, (n =#= m) only the method ofsolution derivation will be indicated. 

3.1. The case of v(O) #y,. As previously noted, the solution is derived in 
this case in the form of expansions in terms of integral powers of parameter a. For each 
coefficient in the expansion of functioil 5 (0, a) we obtain a Fredholm’s nonhomogeneous 
linear integral equation of the second kind with kernel K* (q, 0) and parameter v(O). 

All these equations are successively sulved in accordance with the first Fredholm’s theo- 

rem. For the determination of coefficients of remaining unknown quantities we obtain 
a system of linear algebraic equations, From this system, which is always soluble, we 
derive explicit expressions for the coefficients of a particular approximation in terms of 
quantities determined in preceding approximations. 

The following are the expressions defining c* (0, e), 5 ((I, e), 6’ (E) and A, (E) 
derived in the first three approximations: 

c* (0,~) = - $I cos 8 - &2D22 cos 2 8 - E3 (D13 cos 6 + D,, cm 30) 

5 (6, E) = FC~~ COS 8 + E2c22 COS 28 + E3 (cl3 COS 8 + c33 COS 38) (3.1) 

6’ (E) = - EXOCll - E2 
i +oc22 + 2Ao2 + +xoCnE1l) + c363' 

where 

/lo(&) = $A,, = -+c2 [($ + &g2 - ala] 

c11 - 
4&v%, 

(0) ’ v,* (VI - Y ) 
c,, = do)% 

yq _y(o) ($ D22 + + ~OClJll) 

022 = 845 +$J,,)c W2, E,, = -($-C,,+ s) (3.2) 
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E,, = - c &C.LB I- $ Dzz) , Cl3 = v(*)vl 
VI - v(O) 

c13*, c33 _-= _LY!%._ 
v3 _ .JOf c33* 

In these expressions CT, is a linear function of C,“,, C&, C,, p12, CllC22, C,JJ1, 

h3, C& and fJJ&; D,, is a linear function of the same arguments as C,“::, except 

Cir; C& is a linear function of the same arguments as CF. with the addition of $s; 

033 is a linear function of the same arguments as C&except CL; as’ is a linear func- 

tion of Cis, Caa, CL CZ,fli, ~r2C,,. C&t, C,&~ and -&CL%. 
3.2. The case of ~(0) = vt. In deriving in this case the solution in the form 

of expansion in terms of powers of &‘/a , for the first coefficient of expansion of 5 (6, a) 
we obtain a Fredholm’s homogeneous linear equation of the second kind for ~(0) = vi. 

It is solved with the use of Fredholm’s second theorem. Equations of subsequent coeffi- 
cients, although of the smae form, are nonhomogeneous for the same parameter ~(0) = 
vi. These equations are solved with the use of Fredholm’s third theorem, The coeffici- 

ents of the nth approximate solution of the homogeneous equation is determined by the 
solvability condition of the equation for the (IZ + 2)-nd approximation. 

Each of the coefficients Crr, C,, and C,, is successively determined by the related 

condition of solvability of equations of the third, fourth and fifth approximations. The 
coefficient C,s was not calculated, since we had not determined the fifth approxima- 

tion. Coefficients of expansions of remaining unknown quantities are determined in the 
same manner as for V(O) # Y n. 

The expressions for 5 (0, E), c* (0, E), 6’ (E) and A, (8) derived in the first three 

approximations are 

5” (9, E) = - @r co.5 e 

5 (f3, E) = E’h Cl, cos 8 + E’/S C,, cos 28 + E (C,, cos 0 + css cos 30) 

where 

C,* = - pihafig, a, = 
64~~‘s (vg - V,) (1 - VP) “1 _-- 

(v2 - VI) [8 (3 - 2Vi’%) + i2XnVl’ (1 - VI”)] + QKo%VzVI’ 

c,, = = css* 
213 - Yl 

(3.4) 

In these expressions C$ is a linear function of C& and C,, C,,; 6,’ is a linear func- 

tion of C,3, C3a, Cz, and CjtCz2; the coefficient Cl2 = 0. We recall that in both 
these cases ‘G (13, a) and -c* (0, E) are determined by (1.14) and (1.37). and CD ((3, E) 

and W (0, E) by (1.38). 

3.3. The case of ~(0) = v, = v, (n =j= m). In this case the solution is 
derived in the same manner as in the case of ~(0) = Y n. The only difference being in 
that the solution of the homogeneo~ integral equation in each of the i th approximations 

contains the sum Ci, cos ~0 + Ci, CQS mO. In the general case the coefficients Ci, 

and Ci, are determined by the condition of solvability of the equation for the (i +2)-nd 
approximation. 
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4. Dtterminrtion of the wave profile. The parametric form of the wave 

profile 5 (8, E) and u (6, &) is obtained from the relationships (1.12). Passing to dimen- 

sionless coordinates I / h and y f 3L and using the same notation, after the substitution 

of derived dt> (f3, E) and z (8, a) , we obtain the parametric equations of the wave pro- 

file. Eliminating in these 8, we obtain the equation of wave profile of the form y = 

Y (5, 8). 
We present below the equations of wave profile, correst to within third order terms, 

for the two cases, setting 2% =I: fc. For ~(0) $1 Y, we have 

y (5, a) = + {a& (cos kx - 1) + $8’ (C,, - E,,Cll) (cos 2kx 
(4.1) 

-1)-t_ 

$e3 E g33 - &,3 +- + CllE112 - -+ CllE,, - C,,E,,-j (cos 3kx - f,> 
where the coefficients Cij and Eij are defined by formulas (3.2). 

For y(O) = vr we have 

y (x, F,) = $ IE’?‘C,, (cos kx - 1) + $ E’~S cc22 - -$- C, lz) (cos 2kx - 1)-i- 

-&e[SC,3+$ 1 
( -5) 

,3 C,13 + -g ($- - $) C&3] @OS kx - 1) + 

i 
T” $C33+~(-$-+~3-(+-+&](cos3kx-1))(4.2) 

where the coefficients Cij are defined by formulas (3.4). 
Note 1. Since &* (6) = - p1 cos 6, the coefficient of the principal term in the 

expansion of (9* (6, E) is of the form 

@I* (6) = - PJ sin 0 (4.3) 

and, since the coordinate origin is located at the crest of the bed line wave, the confor- 

ma1 image of the coordinate origin is a point at r = r0 and ff = 0. This implies that 

@i* (9) > 0 must correspond to positive 6 . Hence we must assume that pr < 0. The 

angle @i (6) = C,, sin 6 is, also, positive, owing to the assumption that vi < Y(” < v2 

and because of the expression for 15,~ in the first of formulas (3.2). 
Note 4.2. If Y(O) = Y,, is the eigenvalue of the kernel of the integral equation, 

then this is the particular case mentioned at the beginning of this paper. In fact, for 

v(O) = Y, from formulas (1.22) and (1.26) we obtain the expression (see formula (2.5)) 
which in the linear approximation determines the relationship between c and ho in 
that particular case. 

Note 4. 3. When Y(O) # y1 and the bed line is defined by the expansion (1.3). the 
analysis of the solutionof the linear problem is carried out similarly to that described 
in 2.2 of Sect. 2, and corresponds to IL = 1. Subsequent harmonics are taken into account 
by the addition to the first harmonic in the first term of expansion (1.3) of the sum of 
n harmonics of order i (i = 2, 3, . . . . n). 

The results of the analysis presented in sub-section 2.2 of Sect.2 can be applied to 
the investigation of solution of the nonlinear problem, if one considers that the solution 
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of the linear problem determines the principal terms of the complete solution. 

6. The existence rnd uniquenesa of rolution of the problem. 
Using the Liapunov-Schmidt methods and their developments [S] , we establish the fol- 
lowing theorems. 

Teorem 5.1. The system of Eqs. (1.25),.(1.27). (1.31). (1.32) and (1.36) has for 
~(0) #Y, a unique sdlution G* (0, E), 5 (0, E), s (0, E), A, (E) and 6’ (E) (6’ (E)= 
6 (E) - 1) which is small with respect tt, E , continuous with respect to 8 (0 < 0 < 
23~) , and is an analytic function of E for I& [ < co. 

Theorem 5.2. The system of Eqs. (1.25), (1.27), (1.31), (1.32) and (1.36) has 
for Y(O) = v,, where v1 is the simple and positive eigenvalue, a unique solution c* (0, 

e), 5 (0. ~1, s (0, E) A, (8) and 6’ (8) which is small with respect to E and continu- 
ous with respect to 8 (0 ,( 8 < 2~) , and can be expressed in the form of series expan- 

sions in terms of powers of ~‘/a which is convergent for small I& 1 < co. 
The proof of these theorems is similar to that carried out in 17, 81. These theorems 

imply the absolute and uniform convergence of expansions for if, (0, e), ‘G (f3, e), @‘* 

&I, E) and T* (0, E). The convergence of expansions in powers of e and of ~‘1% (for 

~(0) = vl) for the integrands of functions in (1.12) follows from the general tlieorems 

of the analysis of substitution of series into series. The convergence of expansions whose 

approximate sums are defined by formulas (4.1) and (4.2) is established on the basis of 
general theorems of analysis. 
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